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Airfoil leading-edge suction and energy 
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When a flat-plate airfoil at zero angle of attack encounters a vertical gust in an 
otherwise uniform flow, it experiences a force along the chord. This leading-edge 
suction force is examined for compressible flow with a time-dependent gust. A simple 
derivation of the thrust force is based on the fact that the leading edge is a singular 
point so that the flow here is dominated by the leading-edge dipole strength. From the 
viewpoint of a fluid-fixed observer the fluid does work on the airfoil, and this energy 
must come from the incident gust. Demonstrating energy conservation is not 
surprising, but it gives a better understanding of the relationship between the 
individual energy terms. The derivation shows that the acoustic energy can be 
calculated using compact assumptions at low frequency, but that it must be calculated 
non-compactly at high frequency. For a general gust the work done on the airfoil is 
shown to equal the energy taken from the fluid, the energy transfer occurring at the 
leading edge. For a sinusoidal gust the energy contained in the incident gust is shown 
to equal the sum of the energy remaining in the wake, the work done on the airfoil and 
the acoustic energy radiated away. The relative proportions of the incident energy 
going to these three energy types depends on the gust frequency, the acoustic radiation 
becoming more efficient as the frequency increases. For a fixed gust frequency, the 
thrust force goes to zero at a Mach number of one, and for an incident gust consisting 
of vorticity on the airfoil axis, the entire energy of the gust is radiated as acoustic 
energy at this Mach number. 

1. Introduction 
When a flat-plate airfoil at zero angle of attack encounters a gust, a leading-edge 

suction force or thrust on the airfoil is produced. This is known as the Katzmayr effect 
(1922). In a recent paper Ribner (1993) calculated the suction force for incompressible 
flow on an airfoil encountering a sinusoidal gust in an otherwise uniform flow. It may 
seem surprising, at first, that, in addition to a life force, an airfoil will experience a 
suction force under these conditions, but with a little thought as shown below, the 
principle becomes quite clear. The present paper extends the analysis to compressible 
flow and casts the thrust result in a form depending only on the leading-edge loading, 
valid for any type of gust. Also the mechanism producing the thrust is more clearly 
defined. It will be seen that it is possible to calculate the force in a quasi-steady manner, 
greatly simplifying the analysis and interpretation. The pressure at each point of the 
airfoil surface makes a contribution to the lift force on a flat-plate airfoil, but the only 
region of importance for the suction force is the flow around the leading edge. A flat- 
plate airfoil at an angle of attack in a steady compressible flow is first considered. The 
results when properly expressed are then shown to apply to the unsteady case as well. 
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By D’Alembert’s paradox it is known that there can be no drag force on an airfoil 
at an angle of attack in smooth steady flow with no viscosity. Any force, due to non- 
zero circulation around a two-dimensional body, acts in a direction normal to the fluid, 
not normal to the airfoil as one might expect from the pressure forces (see e.g. 
Batchelor 1967, p. 405). This paradox is resolved by the observation that there is a 
suction force on the leading edge caused by the infinite velocity of the fluid flow around 
the edge. The airfoil pressures act normal to the surface, and cannot produce a force 
along the chord, except at the leading edge. Because the leading edge has infinitesimal 
thickness, no finite pressure can contribute to the suction force. Only infinite pressures 
produced by infinite velocities at the leading edge, can contribute to the thrust, and 
these velocities are produced only by the force dipoles (bound vorticity) that occur at 
an infinitesimal distance from the leading edge. Dipoles at other locations on the airfoil 
can affect the strength of the leading-edge dipoles, and so can indirectly affect the 
suction force, but once the strength of the leading-edge dipoles is known, the suction 
force is determined, regardless of the distribution of dipoles at other locations on the 
surface. The suction force on an airfoil in steady flow will be cast in terms of the 
instantaneous value of the leading-edge loading. An expression for the thrust for an 
airfoil encountering a sinusoidal gust in compressible flow then follows immediately by 
substitution of the leading-edge loading for this case into the steady-flow result. This 
idea is implicit in the derivation of von Karman & Burgers (1935), and is also 
mentioned by Robinson & Laurmann (1956) and Lighthill (1975), all for the 
incompressible flow case. 

For a more complete understanding of the problem, it is useful to consider the 
conservation of energy, as does Ribner (1993) for the case of incompressible flow. 
Work is done on the airfoil, and verifying energy conservation gives confidence that the 
calculation procedures for the various energy terms is correct, and that nothing has 
been neglected. This also gives a better understanding of the efficiency for conversion 
of energy of vorticity into acoustic energy. Because the expression given for the thrust 
depends only on the leading-edge loading and not on the details of the incident 
disturbance, it is first noted that energy conservation can be established by considering 
only the flow in the vicinity of the leading edge. Having established the equality 
between the work done on the airfoil by the suction force and the energy subtracted 
from the fluid, the division of the fluid energy into incident and wake vortex energy and 
radiated acoustic energy is considered. It is shown that this division depends on the 
reduced frequency. Thus, it is not possible to find a division between acoustic energy 
and wake energy that depends only on the instantaneous value of the leading-edge 
loading. For a general incident disturbance the energy taken from the fluid equals the 
work done on the airfoil, but in order to determine the energy remaining in the vorticity 
a specific incident disturbance must be considered. For small reduced frequency, k, the 
energy in acoustic radiation is small compared to the energy remaining in the vortex 
wake, but for large k the reverse is true. Guo (1989) made a similar balance between 
the energy in the fluid, the acoustic energy and the thrust work for the case of an airfoil 
cutting a cylindrical jet. 

In the derivations below care should be taken to note the coordinate system being 
used. For calculating the airfoil force and radiated acoustic field, a standard airfoil- 
fixed coordinate system is used. For the energy calculations, a coordinate system fixed 
to the ambient fluid is used. Different x symbols for these two coordinate systems could 
have been used, but the calculations are sufficiently independent that it seemed simpler 
to use just one symbol, while clearly pointing out the coordinate system used. 

Finally, it should be noted that the analysis presented here assumes linearized flow. 
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The assumptions of linearized flow are violated near the leading edge, and it might 
appear that analyses such as that presented here would become invalid. This point was 
addressed to some extent by Jones (1950), Lighthill (1951) and Batchelor (1967, p. 468). 
The utility of the flat-plate assumption is the simplicity that it gives to the results 
without introducing anomalous behaviour due to the singularity at the leading edge. 
Calculation of the flow around an airfoil with a finite leading-edge thickness would be 
significantly more complex. Since the flat-plate assumption leads to a reasonable 
approximation to the lift, and since the overall force on a real airfoil in smooth, steady 
inviscid flow must be normal to the mean flow, the thrust force should be approximately 
that for a flat plate. However, one would expect a flat-plate analysis, for either the lift 
or the thrust, to break down for gust disturbances that are smaller than the airfoil 
leading-edge thickness. Stated another way, so long as the gust disturbance is large 
compared to the airfoil leading-edge dimension, one would not expect any dramatic 
difference between results for a finite-thickness airfoil and for a flat plate. 

2. Calculation of the thrust 
2.1. SteadyJow 

Figure 1 shows an airfoil in a steady flow in a compressible fluid. The force due to the 
pressure acts normal to the surface, but the overall force is normal to the mean flow 
vector, neglecting viscous forces. The difference between these two vectors is the force 
parallel to the chord produced on the airfoil leading edge. For incompressible flow the 
lift coefficient (Lift/(;p, U 2  Area)) is 27c sin a. Compressibility adds a factor of /I-' 
which can be obtained from a Prandtl-Glauert transformation. For a small angle of 
attack sin a can be replaced by a. The airfoil chord is c (half-chord b) so that the area 
is also c for a unit span of airfoil in the spanwise y-dimension. The force on the airfoil 
is thus 

L = Po u2c7ca/p, (1) 

(2) 

where p2 z 1 - M 2 .  The thrust is then 

T = L sin a = 7cpo U2ca2//3. 

By applying a Prandtl-Glauert transform to equations (5.21) and (5.22) of Garrick 
(1957) or from equations (13) and (16) of Amiet (1974) the airfoil loading (pressure 
jump) on the airfoil for steady compressible flow is 

Thus, near the leading edge 
AC,(X) = ~ ~ / I - ' ( c / E ) ' ~ ~ ,  (4) 

where E E b + x is the distance from the leading edge. Without further consideration it 
is not clear how one would calculate the thrust on a more general airfoil, say a 
cambered airfoil, given equation (2) for a flat-plate airfoil. Thus, for a more general 
result a will be replaced by the leading-edge dipole strength using equation (4); the 
dipole strength in the vicinity of the leading edge determines the leading-edge flow, and 
thus the leading-edge thrust for any zero-thickness airfoil. First, define 

G E lim [ACP(x)(~/c) l i2]  = 4a//3. 
E-tO 

(5) 
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Thrust 
force 

FIGURE 1 .  Lift on an airfoil in steady flow. 

Then, one can define a thrust coefficient 

C, = T / ( p o  U2b)  = (@/8) G2. (6) 

This extends Garrick's (1936) result to compressible flow, but with G defined slightly 
differently . 

2.2. Unsteady $ow 

Equation (6)  determines the thrust force for the steady case. The interesting point is 
that this relation also gives the force for the general unsteady case, either due to airfoil 
motion or to a gust incident on the flat plate. This is because the thrust is totally 
dependent on the pressure forces at the leading edge, a point of singularity in the flow. 
Von Karma, & Burgers (1935, pp. 52, 306) demonstrate this principle when they use 
the suction result derived for steady incompressible flow to show energy conservation 
for the case of a plunging airfoil, but like Garrick, they express G in terms of the 
leading-edge vorticity rather than leading-edge loading. To see that the steady result is 
applicable to the unsteady case, consider the Bernoulli equation in airfoil-fixed 
coordinates : 

a$/at++v2 +p/p = constant. (7) 

For a small enough region in the vicinity of the leading edge any variations of the 
constant on the right-hand side can be ignored since the scale of the incident 
disturbance is finite while the leading-edge thickness is infinitesimal. Also, whereas the 
perturbation velocity u is large, O(E-'/') at a distance E from the leading edge, the 
potential $ ( E )  is O ( E ~ / ~ )  since u = a$/ax. Thus, a$/& can be ignored and the steady 
Bernoulli equation applies. That is, the pressure can be calculated from the 
instantaneous velocity field. 

An example of this principle is that the perturbation pressure and velocity near the 
leading edge are related by the steady relation p = pa Uu. Noting that Ap = 2p, 
equation (29) of Amiet (1990) gives for the airfoil pressure due to a sinusoidal gust in 
incompressible flow 

The subscript u denotes the upper surface, although the only difference between upper 
and lower surfaces is the sign of p. S(k) is the Sears function, defined as 

2 
S(k) = 7Ck [Hp) (k )  - (9) 
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where HF)(k) is the Hankel function of the second kind. Expanding equation (33) of 
Amiet (1990) for small x and comparing with equation (8) gives for the vorticity near 
the leading edge 

which is the relation between p and u for steady flow. Another illustration of this 
leading-edge behaviour can be seen from the general relation 

(10) 
1 
ZPO Uy(x> = -Po UU,(X> = P,(X), 

which is a form of the momentum equation. Taking the x-derivative gives two terms, 
but the dominant term near the leading edge is u = -p(x, z ,  t ) / (p ,  U ) .  Equation (6) uses 
the surface loading rather than the strength of the bound vorticity at the leading edge 
which Garrick (1936) uses. At the leading edge Ap and y are related by Ap = po Uy, but 
expressions for Ap are more readily available than those for y. 

Thus, although equation (6) was derived for steady flow, it is a general result for 
determining the airfoil thrust if the airfoil loading near the leading edge is known. For 
the specific case of an airfoil in compressible flow encountering a sinusoidal gust, 
w, exp (iwt - ikx), equations (1 3) and (1 6) of Amiet (1 974) give for the leading-edge 
loading 

(12) 
where k = wb/U, k* = k /p2 ,  E = b+x  and A M )  is a function of Mach number given 
by Amiet (1974) that will drop out of this analysis. Thus, for a sinusoidal gust 

Ap(x) = - 2p, Uwo P' (c /E)~ /~  S(k*) eiwt+ik*f(M), 

(13) G, = 4w,(pu)-1 S(k*) eiwt+ik*f(M) 

and equation (6) gives for the average thrust 

' - '/S(k*)I2, 
P O W  P 

agreeing with the result of Ribner (1993) when M = 0. A factor o f t  comes from taking 
the time average of cos2(wt) contained in G2.  Equation (6) is really the more general 
equation, however, since it remains valid regardless of the time variation in the 
problem whereas equation (14) is based on an explicit leading-edge loading. 

3. Energy subtracted from the flow 
3.1. Expressions for the energy 

As noted by Ribner, the thrust force on the airfoil subtracts energy from the flow; that 
is, the fluid does work on the airfoil when considered from a coordinate system fixed 
to the ambient fluid. For the incompressible flow case, the shed vorticity tends to cancel 
the incident vorticity. It is of interest to make similar calculations for the compressible 
case, although now there is potential energy in addition to the kinetic energy. Whereas 
an airfoil-fixed coordinate system was used to calculate the airfoil thrust, a fluid-fixed 
coordinate system is used here to calculate the kinetic and potential energies of the 
fluid. These are given by Pierce (1981) as 

EK = gpo v2, Ep  = fpz/(p, c:). (15) 

v = v4, p = -Poa$/at. (16) 

The fluid velocities and pressure are related to the velocity potential by 
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FIGURE 2.  Control areas A ,  and A ,  for calculating the energy flow. 

The kinetic and potential energies are added and integrated over the upper and lower 
fluid volumes, V, and V,, together constituting the entire (x, z)-plane with the exclusion 
of the region around the x-axis as shown in figure 2. This volume is excluded in order 
to exclude the airfoil sound source, but the volume excluded is made vanishingly small. 
The total energy E is then 

Introducing the wave equation 

c; v2$ - a Z $ / a t 2  = o 

gives 

First this will be manipulated into a form to be used in the following section for 
calculating the energy of the vorticity. In a fluid-fixed coordinate system downstream 
of the airfoil the time derivatives go to zero; the divergence theorem is then used to 
transform to an integration over areas A, and A, giving 

(20) 
-E 2 = ~vVm($V$)dV= - $wdA+ $wdA, 

Po [ A ,  J A ,  

which is essentially the form used by Ribner. However, he did not consider the detailed 
flow in the near vicinity of the airfoil; rather, equation (20) was used to calculate the 
energy in the far wake after the airfoil passed through a complete cycle, resulting in the 
calculation of an average energy. 

To make an instantaneous energy balance between the fluid energy and the work 
done on the airfoil a slightly different form will be used. To this end the time derivative 
of equation (19) is calculated. Together with equations (16) and (18) and the fact that 
the volume of integration is time invariant, this gives 

dE -+ pv*dA=O, 
dt J A  

where dA represents the surface area of the volume of integration with an outward 
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normal. This equation states that the energy change dE/dt is equal to the pressure 
work done on the volume. This technique was also used by Morse & Ingard (1968, 
p. 730) to calculate the energy radiated by moving sources. But the pressure is zero on the 
axis ahead of and behind the airfoil, and the velocity normal to area dA, the z-velocity 
normal to the airfoil, is zero on the airfoil. The product pw thus appears to be zero 
everywhere on areas A,  and A,  which are an infinitesimal distance from the axis. This 
dilemma is resolved by noting that the pressure becomes infinite as x approaches - b 
from x > - b and the velocity becomes infinite as x approaches - b from x < - b, and 
a finite amount of energy enters the airfoil at the point x = -b. This is consistent with 
the fact that the thrust force is determined solely by the vorticity or airfoil loading in 
the limit as one approaches x = - b. If the thrust is dependent solely on the leading- 
edge loading, so is the energy absorbed by the airfoil and the energy subtracted from 
the fluid. 

3.2. Energy balance for a general disturbance 
The area of integration to be used in the application of equation (21) is shown as A,  
and A,  in figure 2.  The calculation of this area integral is simplified by noting that either 
p or w is zero except near the leading edge, and in this region p and w can be calculated 
using quasi-steady flow. Because there is an inverse square-root singularity at the 
leading edge, the fluid pressure and velocity will be calculated for a flat plate with a 
loading Ap = p a  -pL given by 

where the origin is now taken at the airfoil leading edge and Apo has no dependence 
on x .  

To calculate the pressure in the vicinity of the leading edge, the pressure produced 
by a point force FS(x) S( y )  in a moving fluid is needed, where S(x) is the Dirac delta 
function. Since quasi-steady behaviour is assumed near the leading edge the pressure 
is a solution of the equation 

Ap = Apo(c/x)1’2, (22) 

(v2 - M v / a x 2 ) p  = v . F. (23) 

This is just the wave equation for a moving fluid but with the time dependence 
eliminated since flow around the leading edge can be treated as quasi-steady. The 
solution to this equation can be found by applying a Prandtl-Glauert transform, then 
defining p = V . 0  and solving the resulting Laplace’s equation for the vector 0, 
obtaining the standard ln(r) source behaviour for 0. For a z-component of force, 
F =  kF,, this leads to the result 

where cr2 = x 2  + P2z2. This agrees with the small-w expansion of the expression for an 
oscillating two-dimensional force (equation (47) below). 

The velocity potential for this point force can be found fromp using the relation for 
quasi-steady flow, p = -po Uu = -po Ua$/ax .  Taking the derivative gives applaz = 
-po Uawlax,  and integration with respect to x gives 

For incompressible flow this is easily verified to be the velocity produced by a bound 
vortex y that produces a force on the fluid F, = po Uy.  



234 R.  K.  Amiet 

\ 

- 
/ / / / I / / / / /  

FIGURE 3. Control volume around the nose of the airfoil for calculating the work 
done by the fluid on the airfoil. 

Integrating over the airfoil chord using equation (22) for the distribution of force 
near the leading edge, combined with equation (24) for the pressure produced by a 
point force, gives for the pressure near the leading edge 

The upper integration limit is taken as co rather than c since z is assumed vanishingly 
small and the major contribution to the integral comes from the vicinity of the lower 
limit. The small-z assumption is necessary because of the assumption of quasi-steady 
flow in equation (26). The second equality was found using integral 2.161.1 of 
Gradshteyn & Ryzhik (1965). The overbars on x and a represent normalization by the 
half-chord b. 

For the same force distribution and using equation (25) for the velocity produced by 
a point force, the z velocity component near the leading edge is 

where integral 3.252.9 of Gradshteyn & Ryzhik (1965) with It = 0 was used. 
The productpw in equation (21) can now be calculated from equations (26) and (27), 

giving a surprisingly simple result. This must be integrated over both areas A ,  and A,. 
The A, integral is 

POU dE zp2 a, dx 7tP 

(Ap0)’b( dt)Al = -,/-mi. = -- 4 ’  

Although approximations have been made limiting the analysis to the vicinity of the 
leading edge, this integral has limits - co < x < co, since just as for equations (26) and 
(27), the integral is considered in the limit z + 0, in which case the integrand becomes 
very sharply peaked around x = 0. Adding the equal contribution of the second area 
A,, the rate of energy addition to the fluid is found to be 

(28) ~- 

where Apo will generally be a function of time. On the other hand, from equations ( 5 ) ,  
(6) and (22) the rate of work done on the airfoil is found to be the negative of this, i.e. 
(dE/dt),,,,, = - (dE/dt)fluid. Thus, the energy taken from the fluid at any instant of 
time equals the energy added to the airfoil. 

This is not surprising, and there is a much more direct way to look at the problem. 
Consider an airfoil with a small but finite leading-edge radius, as in figure 3. A control 
surface, A,, fixed in the fluid, is drawn an infinitesimal distance from the airfoil surface 
across which the flow of fluid energy will be considered. The thrust force is the integral 
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around the leading edge of the perturbation pressure multiplied by cos 8, to resolve the 
component of the normal pressure force in the axial direction; the work done on the 
airfoil is the thrust times the distance travelled, 1. On the other hand, the rate of energy 
loss from the fluid is the integral of the pressure multiplied by the fluid velocity normal 
to the control surface. The normal fluid velocity is Ucos8, and the integral must be 
multiplied by l /U  to find the energy added to the fluid for a distance 1 travelled. Thus, 
the integral of p cos 0 over the nose gives both the work done on the airfoil and the 
energy taken from the fluid. 

4. Conservation of thrust work, acoustic energy and vortex energy - low 
frequency 

Whereas the above analysis only requires the specification of the leading-edge 
loading and is valid for a general time behaviour, the analysis in this section assumes 
a sinusoidal incident gust. It was possible above to show equality between the energy 
absorbed by the airfoil and the energy taken from the fluid since the entire action takes 
place at the leading edge, and any acoustic energy is considered as part of the fluid 
energy. Once the leading-edge loading is specified, it is possible to calculate the thrust 
on the airfoil, which allows one to calculate the energy taken from the fluid. For 
incompressible flow the work done on the airfoil must equal the energy taken from the 
incident disturbance, and equation (29) is sufficient to calculate this energy exchange. 
For compressible flow with an incident gust disturbance, however, the energy taken 
from an incident vorticity is split into that remaining in the wake vorticity and the 
acoustic energy propagated away, but these are related to the loading distribution over 
the entire airfoil. To calculate this split, it thus becomes necessary to specify the 
incident disturbance. It will be found that the ratio of acoustic energy to energy 
remaining in the wake vorticity increases with an increase in the reduced frequency. 

The analysis will proceed in a manner similar to that above. For calculating the 
acoustic energy the control surfaces A, and A ,  will be moved far from the x-axis. The 
energy of the vorticity fields upstream and downstream of the airfoil will be calculated 
using equation (20); this calculation will assume an infinite vortex sheet, ignoring the 
flow details around the airfoil. This means that only the average energy over a cycle can 
be determined. Since no exact solution is available for the compressible airfoil-gust 
interaction problem, an expansion in reduced frequency is made. 

4.1. Wake energy 
In fluid-fixed coordinates the incident gust is produced by a vortex sheet on the x-axis 

y(x) = yoeikz, - co < x < co, (30) 

where the overbar on a coordinate, X, Z, a, denotes normalization by the half-chord b. 
Since linearized flow is assumed, the effects of compressibility can be ignored as they 
are second order in the velocity. Thus, the incident vorticity gives a vertical velocity 
field 

where wo = $yo. This has a velocity potential 

w(x)=woeikz, -co<x<co,  (31) 

, -co<x<co,  z > o .  (32) $(x, z )  = - bw, k-le-kz-ikz 

Equation (20) is now used to find the average energy density of the incident vorticity. 
Since the integrals over A ,  and A, are equal, only one need be evaluated, eliminating 
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the factor o f t .  The real parts of # and w are needed in the equation. These can be 
expressed as 

(33) 

where the asterisk represents the complex conjugate. The second equality is obtained 
by noting that #w and #*w* average to zero, and the two remaining products are equal 
so that only one need be evaluated. Introducing equations (31) and (32), the average 
energy Eo for a length 1 of the incident vorticity is equal to that given by von K6rmin 
& Burgers (1935, p. 307) for incompressible flow 

- E  4 = - [ A l ( # + # * ) ( ~ + ~ * ) d ~  = - 2  #w*dx, 

Po 14 

- 
E, = t p o  W: k-lbl. (34) 

The incident velocity field produces a pressure on the upper airfoil surface in airfoil- 
fixed coordinates (Amiet 1974) 

where p = Mk*. Equation (35) is an approximation for Mk* < 1.  The Sears function, 
S(k), is defined in equation (9) andf(M), a function of Mach number, drops out of 
this analysis. The potential on the airfoil can be determined by introducing this 
pressure into equation (1 1) giving 

The axial velocity is then 

(37) 

At the trailing edge x = b and the second term in the brackets becomes zero. The limits 
on the integral become 1 ,  and this integral can be calculated in closed form. Using 
integrals 3.753.2 and 3.753.5 of Gradshteyn & Ryzhik (1965), the vorticity y = -22.4, 
at the trailing edge is 

(38) 

This vorticity is shed into the fluid, leaving in the wake a shed vorticity, expressed 

(39) 

Equations (30)-(32) give the relation between vorticity, vertical velocity and velocity 
potential for a vortex sheet, allowing the velocity and potential produced by shed 
vorticity to be found from equation (39). Adding the velocity produced by the incident 
gust gives the overall result 

(40) 

? I z x b  = 2nikp1w, S(k*) ei[wt-k+k*f(M)] [Jo(k*) - iJ,(k*)]. 

in fluid-fixed coordinates : 

y(x) = 2nik~ 'w0 S(k*) e-ikz+ik*f(M) [Jo(k*) - iJl(k*)]. 

w(x) = - w,(nkp-'S(k*) eik*f(M) [J,(k*) - iJ,(k*)] - I} e-ikz. 

This will be introduced into equation (33), along with #Jx) = - bw(x)/k, to find the 
energy in the wake. Neglecting higher-order terms 

# u ( ~ )  w*(x) = -k-'[nPk*(l -ink*)- 1l2bw;. (41) 
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Use was made of the small-k expansions of the Bessel functions and the expansion 

237 

S(k) = 1 -$nk + ik In (gk) + iky + O(k2). 

# u ( ~ )  w*(x) - [ # u ( ~ )  w*(x)]~ = n/T'[2 - (1 + /3) nk*] bw:. 

(42) 

Subtracting the initial wake energy to find the change in energy and simplifying, 

(43) 

Introducing this into equation (33) and comparing to equation (34), the change in 
average energy for a length 1 of the wake compared to the energy of the incident 
vorticity is 

(44) 

where k* E k/p2. From equation (14), the work done on the airfoil on traversing a 

(45) 

Comparing the two equations, one can deduce that there is an average energy deficit 

(46) 
of 

AEvo~t i c i t~ /Eo  = -@(2-1~k* -/Ink*) k*, 

Ethrust/Eo = Tl/Eo = 2xP( 1 - xk*) k*. 

~ a c o u s t i c ~ ~ o  = (1 -PI /3n k 

length 1 is - 

2 *2* - 

This must go into acoustic propagation as will be shown below. 
Finally, it should be emphasized that equations (44k(46) are not valid for M-t  1 

because of the limitation Mk* -g 1. In practice, the airfoil response approximation 
remains reasonably accurate for Mk* < ~ / 4  (Amiet 1974, 1976). The case of M-t  1 is 
considered in the high-frequency case below in 5 5 .  

4.2. Acoustic energy 
To calculate the radiated acoustic energy to the same order as equation (46), only the 
lowest-order lift solution is needed and the airfoil sound source can be treated as 
compact; all trailing-edge effects are included in the left response. The far-field pressure 
and velocity will be determined in order to calculate the acoustic energy radiated using 
equation (21), where the surfaces A, and A, are now assumed to be located in the far 
field. 

The general expression for the pressure due to a point force F6(x) 6(z) exp (iot), in 
an airfoil-fixed coordinate system, is (see e.g. Fung 1969, equations (14.1.18) and 
(14.2.12)) 

Assuming a vertical force F =jC and expanding for large cr using the large-argument 
expansion of the Bessel function the expression for far-field pressure is 

The velocity is related to the pressure in the far field by the plane wave relation p = 
pocoluI. In equation (21) the vertical component of velocity is needed. Since the 
magnitude of the velocity is known, all that is needed is the direction of the velocity 
vector. This vector is normal to the wavefront, and so can be found by taking the 
gradient of the phase in equation (48). The phase +, with a proportionality constant 
C, is 

(49) II. = C(MX - cr). 
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Taking the gradient gives for the wavefront normal 

n = [(Mg - x) i - z/3'k]/(v - Mx). (50) 

Thus, the pressure must be multiplied by ~/3~/l[(c~-Mx)p, c,] to find the z-component 
of the vertical velocity and 

This is introduced into equation (2 l), requiring an x-integration. The following integral 
was found using the symbolic algebra computer program Maple (Char et al. 1991), and 
was verified numerically : 

Equation (51) was derived assuming a point force for F,, but since the source can be 
assumed to be compact to the order calculated here, F, can be taken to be equal to the 
airfoil lift given by equation (1) with a = w,/U. Combining this with equations (21) 
and (51)-(52), multiplying by a factor of 2 to account for integration over both the 
surfaces A ,  and A ,  and a factor of f since +(p  +p*)  (w + w*) averages to fpw*, gives 

(dE/dt)acoustic = (1 - P) Px2k*' U J q A  (53) 

where the average, E, denotes the energy of the fluid averaged over one cycle. Finally, 
the time for the airfoil to travel a distance 1 is l /U,  and the acoustic energy passing 
through the integration surface during this time is again found to be given by equation 
(46) which was the difference between the energy subtracted from the vorticity and the 
work done on the airfoil. 

Thus, for small k and relative to the energy in the incident vorticity, E,, equation (44) 
shows that the energy subtracted from vorticity is O(k), as is the work done on the 
airfoil given by equation (45), and equation (46) shows that the energy in the acoustic 
radiation is O(k2). 

5. Conservation of thrust work, acoustic energy and vortex energy - high 
frequency 

The pressure on an airfoil at high frequency (Mk* 9 1) is (Amiet 1976) 
5.1. Wake energy 

P,(X> - _ -  1 e-ip(l-M)x-in/4 

p, Uw, [nkx(l+ M)]"' , (54) 

where the airfoil-fixed coordinate system has x = 0 at the leading edge. This pressure 
is derived assuming the airfoil is a semi-infinite flat plate, thus ignoring the trailing-edge 
effects. A trailing-edge correction is also given in the reference, but this is O(k-'), and 
so is small compared to the terms retained in this analysis. Landahl(l961) shows that 
iterating between the leading and trailing edges in this manner produces a proper 
convergent series. The potential given by introducing equation (54) into equation 
(11) is 
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The approximate result was obtained by setting the upper limit to infinity; the next 
term in an expansion can readily be found by writing the integral as a sum of an 
integral with limits of k 00 minus an integral with limits of x and co, but this is not 
needed. Using equations ( 3 1 )  and (32) to relate 4 and w shows that this potential field 
produces a velocity w = - w, exp (- ikx) ; that is, it is just the negative of the incident 
field and there is complete cancellation of the incident vorticity. All the energy in the 
incident vorticity goes into thrust work on the airfoil and acoustic propagation. The 
complete cancellation of the incident vorticity was also noted by Amiet (1990) for the 
incompressible high-frequency case ; see equation (52) and surrounding text where 
some discussion of the physical reasons for this cancellation is given. The complete 
cancellation occurs only because the incident vorticity lies on the axis, the same as the 
airfoil. If the incident vorticity were to lie off the axis, far downstream one would have 
the incident vorticity, off the axis, together with shed vorticity on the axis that gives a 
flow field equivalent to the mirror image of the incident vorticity. 

5.2. Acoustic energy 
Equation (48) gives the acoustic radiation for a point force at the origin (0,O) with the 
observer at ( x ,  z). Since compactness is no longer assumed, when this equation is used 
to represent a force on the airfoil, it must be modified to give the far-field pressure 
produced by a force at (x,, 0). When integrating over the source strength, xo becomes 
the integration variable in equation (57) below. Substituting x-x, for x in equation 
(48) and expanding for x 9 x ,  gives 

4 2w 1/2 ,ip[M(Z--l,)--b+Z,x/u]fi(wt+ll/4) p(x,z) = -- - 
4 a  0 xac,  

Using 4 = Ap = 2pu with p u  given by equation (54) and integrating over the airfoil 
gives for the far-field sound 

For the lowest-order term in a k-' expansion, the upper limit of the integral can be 
replaced by co giving 

Again using equation (50) for the normal to the wavefront, the z-component of far- 
field velocity is 

The product pw* is then 

The following integral was found using the symbolic algebra computer program, 
Maple (Char et al. 1991), and verified numerically 

m 1 + M - p  

Mp' * 

[(x' + P2)1/2 - X )  ((2 + /32)"z - Mx) (x2 + P')]-' dx = n: I, 
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Performing the x-integration in equation (21), multiplying the result by 2 to account 
for both surfaces A ,  and A ,  and by i since i(p +p*) (w + w*) averages to ipw*, gives 

The energy transmitted during a time At = I/U is then 
- 

Eacous t ic IEo = 1 -M)IP* (63) 

The thrust is given by equation (6) with G given by equation (5) .  The value for G 
using the particular loading for the sinusoidal gust considered here is found by using 
equation (54) for Ap. This gives 

(64) 

Using this in equation (6) gives for the average work done on the airfoil on moving a 
distance I 

(65) 

The average energy of the incident gust is given by equation (34) and one notes that 
the energy in the incident gust is equal to the acoustic energy radiated plus the energy 
taken out by the work on the airfoil. In contrast to the low-frequency case, however, 
now all the incident vortex energy is transformed into acoustic energy and work on the 
airfoil, and these three energies are of the same order in k. There is still some energy 
in the wake, but this is of higher order in k-’. One also notes from equations (63) and 
(65) that as M +  1 the energy of the incident vorticity is transformed more and more 
into acoustic radiation until at M = 1 there is complete transformation of the energy 
of the incident vorticity into acoustic radiation. Guo (1989) also finds the energy 
radiated to increase monotonically with increasing M for the intersection of a semi- 
infinite airfoil with a circular jet, but in that case the function of Mach number is 
somewhat more complex than equation (63). 

This behaviour can be explained physically. The airfoil response given by equation 
(54) is for a semi-infinite airfoil with no trailing edge. This explains why there is no 
vorticity left in the wake, to this order. As the gust impinges on the airfoil and moves 
far downstream from the leading edge, the flow field becomes that of the incident gust 
plus its mirror image in the airfoil, which, because the airfoil now appears infinite, 
exactly cancels an incident gust lying on the axis. The acoustic wave created at the 
leading edge impinges on the trailing edge, scattering the wave and creating shed 
vorticity. This is demonstrated by a trailing-edge correction, but the result is O(k-’/’) 
smaller than the acoustic wave produced by the leading edge (Landahl 1961). For 
M < 1, the incident gust as it impinges on the airfoil does not immediately see an infinite 
flat plate, so the mirror-image solution is not instantaneously created. Rather, the gust 
has time to interact with the leading edge, creating the suction force. However, at 
M = 1, the gust no longer has the time to interact with the leading edge. A pressure 
perturbation created on the upper surface of the airfoil can no longer create a flow 
around the leading edge to relieve the pressure; the airfoil instantly appears as an 
infinite flat plate to that portion of the gust cut by the airfoil. This is repeated at the 
trailing edge where the acoustic wave created at the leading edge impinges on the 
trailing edge, but no radiating dipoles can appear just upstream of the trailing edge 
since the presence of the trailing edge cannot be propagated upstream. 

Other recent papers considering energy conservation for similar problems are 
Ffowcs Williams & Guo (1988), Guo (1989, 1991a,b) and Levine (1991). Since three 

[GI = 4(w0/U) [2nk(l +M)]-l”. 

Ethrust/Eo = Tl/Eo = (1 -M)/P.  
- 
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of the references consider supersonic flow, there is no infinity in the velocity at the 
leading edge and so no leading-edge suction force. The results of Guo (1989) are for 
subsonic flow, and it would be interesting to compare them with the present results. 
However, Guo calculates the energy balance for the case of a circular jet impinging on 
an airfoil while the present paper considers the two-dimensional problem of the energy 
radiated by an incident sinusoidal gust, and there is no obvious quantitative 
comparison between the results for the two cases. 

6. Conclusions 
The thrust force on a flat-plate airfoil encountering a gust can be calculated using the 

instantaneous leading-edge flow. The pressure and velocity of the fluid in the vicinity 
of the leading edge depend only on the asymptotic limit of the airfoil loading at the 
leading edge. Integrating the product of this pressure and velocity over a control 
surface parallel to the x-axis and an infinitesimal distance above and below the airfoil 
shows that the energy subtracted from the fluid is equal to the work done on the airfoil. 
The equality between the work done on the airfoil and the energy subtracted from the 
fluid becomes an almost trivial statement, however, for a control volume an 
infinitesimal distance from an airfoil with a small rounded leading edge. For 
incompressible flow the energy difference between incident and wake vorticity equals 
the work done on the airfoil, but for compressible flow this energy difference equals the 
sum of the work done on the airfoil and acoustic energy radiated away, as Ribner 
noted that it must. When the Mach number goes to one, the work done on the airfoil 
also goes to zero, and all energy taken from the incident vorticity is radiated as acoustic 
energy. When measured relative to the energy of the incident vorticity, at low frequency 
the energy difference between incident and wake vorticity is O(k) as is the energy added 
to the airfoil while the radiated acoustic energy is O(k2). At high frequency, the energy 
of the incident vorticity, the energy added to the airfoil and the acoustic radiation are 
all of the same order, and to this order no energy remains in the wake, any remaining 
wake energy being O ( I V ' / ~ )  smaller. This cancellation of the incident vorticity only 
occurs if the incident vorticity lies in the plane of the airfoil. If the incident vorticity 
does not lie in the plane of the airfoil, far downstream the flow field will consist of the 
incident vorticity plus its mirror image, which gives only partial cancellation of the 
incident flow energy. 

The author is indebted to Professor Ribner for suggesting this problem and for 
useful comments. 
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